Cytosolic tail sequences and subunit interactions are critical for synaptic localization of glutamate receptors.

نویسندگان

  • Howard Chia-Hao Chang
  • Christopher Rongo
چکیده

AMPA-type glutamate receptors mediate excitatory synaptic transmission in the nervous system. The receptor subunit composition and subcellular localization play an important role in regulating synaptic strength. GLR-1 and GLR-2 are the Caenorhabditis elegans subunits most closely related to the mammalian AMPA-type receptors. These subunits are expressed in overlapping sets of interneurons, and contain type-I PDZ binding motifs in their carboxy-terminal cytosolic tail sequences. We report that GLR-1 and GLR-2 may form a heteromeric complex, the localization of which depends on either GLR-1 or GLR-2 tail sequences. Subunit interactions alone can mediate synaptic localization as endogenous GLR-1, or GLR-2 subunits can rescue the localization defects of subunits lacking tail sequences. Moreover, GLR-2 cytosolic tail sequences are sufficient to confer synaptic localization on a heterologous reporter containing a single-transmembrane domain. The localization of this GLR-2 reporter requires both a PDZ-binding motif in the GLR-2 tail sequence, and sequences outside of this motif. The PDZ protein LIN-10 regulates the localization of the reporter through the sequences outside of the PDZ-binding motif. Our results suggest that multiple synaptic localization signals reside in the cytosolic tail sequence of the receptor subunits, and that channel assembly can rescue the synaptic localization defects of individual mutant subunits as long as there are also wild-type subunits in the receptor complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 118 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2005